
Chapter 1

Iteration

Iteration is a key element in much of technical computation. Examples involving the
Golden Ratio introduce the Matlab assignment statement, for and while loops,
and the plot function.

Start by picking a number, any number. Enter it into Matlab by typing

x = your number

This is a Matlab assignment statement. The number you chose is stored in the
variable x for later use. For example, if you start with

x = 3

Matlab responds with

x =

3

Next, enter this statement

x = sqrt(1 + x)

The abbreviation sqrt is the Matlab name for the square root function. The
quantity on the right,

√
1 + x, is computed and the result stored back in the variable

x, overriding the previous value of x.
Somewhere on your computer keyboard, probably in the lower right corner,

you should be able to find four arrow keys. These are the command line editing keys.
The up-arrow key allows you to recall earlier commands, including commands from

Copyright c⃝ 2011 Cleve Moler
MatlabR⃝ is a registered trademark of MathWorks, Inc.TM

October 4, 2011

1

2 Chapter 1. Iteration

previous sessions, and the other arrows keys allow you to revise these commands.
Use the up-arrow key, followed by the enter or return key, to iterate, or repeatedly
execute, this statement:

x = sqrt(1 + x)

Here is what you get when you start with x = 3.

x =

3

x =

2

x =

1.7321

x =

1.6529

x =

1.6288

x =

1.6213

x =

1.6191

x =

1.6184

x =

1.6181

x =

1.6181

x =

1.6180

x =

1.6180

These values are 3,
√
1 + 3,

√
1 +

√
1 + 3,

√
1 +

√
1 +

√
1 + 3, and so on. After

10 steps, the value printed remains constant at 1.6180. Try several other starting
values. Try it on a calculator if you have one. You should find that no matter where
you start, you will always reach 1.6180 in about ten steps. (Maybe a few more will
be required if you have a very large starting value.)

Matlab is doing these computations to accuracy of about 16 decimal digits,
but is displaying only five. You can see more digits by first entering

format long

and repeating the experiment. Here are the beginning and end of 30 steps starting
at x = 3.

x =

3

3

x =

2

x =

1.732050807568877

x =

1.652891650281070

....

x =

1.618033988749897

x =

1.618033988749895

x =

1.618033988749895

After about thirty or so steps, the value that is printed doesn’t change any more.
You have computed one of the most famous numbers in mathematics, ϕ, the
Golden Ratio.

In Matlab, and most other programming languages, the equals sign is the
assignment operator. It says compute the value on the right and store it in the
variable on the left. So, the statement

x = sqrt(1 + x)

takes the current value of x, computes sqrt(1 + x), and stores the result back in
x.

In mathematics, the equals sign has a different meaning.

x =
√
1 + x

is an equation. A solution to such an equation is known as a fixed point. (Be careful
not to confuse the mathematical usage of fixed point with the computer arithmetic
usage of fixed point.)

The function f(x) =
√
1 + x has exactly one fixed point. The best way to

find the value of the fixed point is to avoid computers all together and solve the
equation using the quadratic formula. Take a look at the hand calculation shown
in figure 1.1. The positive root of the quadratic equation is the Golden Ratio.

ϕ =
1 +

√
5

2
.

You can have Matlab compute ϕ directly using the statement

phi = (1 + sqrt(5))/2

With format long, this produces the same value we obtained with the fixed point
iteration,

phi =

1.618033988749895

4 Chapter 1. Iteration

Figure 1.1. Compute the fixed point by hand.

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 1.2. A fixed point at ϕ = 1.6180.

Figure 1.2 is our first example of Matlab graphics. It shows the intersection
of the graphs of y = x and y =

√
1 + x. The statement

x = -1:.02:4;

generates a vector x containing the numbers from -1 to 4 in steps of .02. The
statements

y1 = x;

y2 = sqrt(1+x);

plot(x,y1,’-’,x,y2,’-’,phi,phi,’o’)

5

produce a figure that has three components. The first two components are graphs
of x and

√
1 + x. The ’-’ argument tells the plot function to draw solid lines. The

last component in the plot is a single point with both coordinates equal to ϕ. The
’o’ tells the plot function to draw a circle.

The Matlab plot function has many variations, including specifying other
colors and line types. You can see some of the possibilities with

help plot

φ

φ − 1

1

1

Figure 1.3. The golden rectangle.

The Golden Ratio shows up in many places in mathematics; we’ll see several
in this book. The Golden Ratio gets its name from the golden rectangle, shown in
figure 1.3. The golden rectangle has the property that removing a square leaves a
smaller rectangle with the same shape. Equating the aspect ratios of the rectangles
gives a defining equation for ϕ:

1

ϕ
=

ϕ− 1

1
.

Multiplying both sides of this equation by ϕ produces the same quadratic polynomial
equation that we obtained from our fixed point iteration.

ϕ2 − ϕ− 1 = 0.

The up-arrow key is a convenient way to repeatedly execute a single statement,
or several statements, separated by commas or semicolons, on a single line. Two
more powerful constructs are the for loop and the while loop. A for loop executes
a block of code a prescribed number of times.

x = 3

for k = 1:31

x = sqrt(1 + x)

end

6 Chapter 1. Iteration

produces 32 lines of output, one from the initial statement and one more each time
through the loop.

A while loop executes a block of code an unknown number of times. Termi-
nation is controlled by a logical expression, which evaluates to true or false. Here
is the simplest while loop for our fixed point iteration.

x = 3

while x ~= sqrt(1+x)

x = sqrt(1+x)

end

This produces the same 32 lines of output as the for loop. However, this code is
open to criticism for two reasons. The first possible criticism involves the termi-
nation condition. The expression x ~= sqrt(1+x) is the Matlab way of writing
x ̸=

√
1 + x. With exact arithmetic, x would never be exactly equal to sqrt(1+x),

the condition would always be true, and the loop would run forever. However, like
most technical computing environments, Matlab does not do arithmetic exactly.
In order to economize on both computer time and computer memory, Matlab uses
floating point arithmetic. Eventually our program produces a value of x for which
the floating point numbers x and sqrt(1+x) are exactly equal and the loop termi-
nates. Expecting exact equality of two floating point numbers is a delicate matter.
It works OK in this particular situation, but may not work with more complicated
computations.

The second possible criticism of our simple while loop is that it is inefficient. It
evaluates sqrt(1+x) twice each time through the loop. Here is a more complicated
version of the while loop that avoids both criticisms.

x = 3

y = 0;

while abs(x-y) > eps(x)

y = x;

x = sqrt(1+x)

end

The semicolons at the ends of the assignment statements involving y indicate that
no printed output should result. The quantity eps(x), is the spacing of the floating
point numbers near x. Mathematically, the Greek letter ϵ, or epsilon, often rep-
resents a “small” quantity. This version of the loop requires only one square root
calculation per iteration, but that is overshadowed by the added complexity of the
code. Both while loops require about the same execution time. In this situation, I
prefer the first while loop because it is easier to read and understand.

Help and Doc
Matlab has extensive on-line documentation. Statements like

help sqrt

help for

7

provide brief descriptions of commands and functions. Statements like

doc sqrt

doc for

provide more extensive documentation in a separate window.
One obscure, but very important, help entry is about the various punctuation

marks and special characters used by Matlab. Take a look now at

help punct

doc punct

You will probably want to return to this information as you learn more about
Matlab.

Numbers
Numbers are formed from the digits 0 through 9, an optional decimal point, a
leading + or - sign, an optional e followed by an integer for a power of 10 scaling,
and an optional i or j for the imaginary part of a complex number. Matlab also
knows the value of π. Here are some examples of numbers.

42

9.6397238

6.0221415e23

-3+4i

pi

Assignment statements and names
A simple assignment statement consists of a name, an = sign, and a number. The
names of variables, functions and commands are formed by a letter, followed by any
number of upper and lower case letters, digits and underscores. Single character
names, like x and N, and anglicized Greek letters, like pi and phi, are often used
to reflect underlying mathematical notation. Non-mathematical programs usually
employ long variable names. Underscores and a convention known as camel casing
are used to create variable names out of several words.

x = 42

phi = (1+sqrt(5))/2

Avogadros_constant = 6.0221415e23

camelCaseComplexNumber = -3+4i

Expressions
Power is denoted by ^ and has precedence over all other arithmetic operations.
Multiplication and division are denoted by *, /, and \ and have precedence over
addition and subtraction, Addition and subtraction are denoted by + and - and

8 Chapter 1. Iteration

have lowest precedence. Operations with equal precedence are evaluated left to
right. Parentheses delineate subexpressions that are evaluated first. Blanks help
readability, but have no effect on precedence.

All of the following expressions have the same value. If you don’t already
recognize this value, you can ask Google about its importance in popular culture.

3*4 + 5*6

3 * 4+5 * 6

2*(3 + 4)*3

-2^4 + 10*29/5

3\126

52-8-2

Recap
%% Iteration Chapter Recap

% This is an executable program that illustrates the statements

% introduced in the Iteration chapter of "Experiments in MATLAB".

% You can run it by entering the command

%

% iteration_recap

%

% Better yet, enter

%

% edit iteration_recap

%

% and run the program cell-by-cell by simultaneously

% pressing the Ctrl-Shift-Enter keys.

%

% Enter

%

% publish iteration_recap

%

% to see a formatted report.

%% Help and Documentation

% help punct

% doc punct

%% Format

format short

100/81

format long

100/81

format short

9

format compact

%% Names and assignment statements

x = 42

phi = (1+sqrt(5))/2

Avogadros_constant = 6.0221415e23

camelCaseComplexNumber = -3+4i

%% Expressions

3*4 + 5*6

3 * 4+5 * 6

2*(3 + 4)*3

-2^4 + 10*29/5

3\126

52-8-2

%% Iteration

% Use the up-arrow key to repeatedly execute

x = sqrt(1+x)

x = sqrt(1+x)

x = sqrt(1+x)

x = sqrt(1+x)

%% For loop

x = 42

for k = 1:12

x = sqrt(1+x);

disp(x)

end

%% While loop

x = 42;

k = 1;

while abs(x-sqrt(1+x)) > 5e-5

x = sqrt(1+x);

k = k+1;

end

k

%% Vector and colon operator

k = 1:12

x = (0.0: 0.1: 1.00)’

%% Plot

x = -pi: pi/256: pi;

y = tan(sin(x)) - sin(tan(x));

10 Chapter 1. Iteration

z = 1 + tan(1);

plot(x,y,’-’, pi/2,z,’ro’)

xlabel(’x’)

ylabel(’y’)

title(’tan(sin(x)) - sin(tan(x))’)

%% Golden Spiral

golden_spiral(4)

Exercises

1.1 Expressions. Use Matlab to evaluate each of these mathematical expressions.

432 −34 sin 1

4(3
2) (−3)4 sin 1◦

(43)
2 4

√
−3 sin π

3
4
√
32 −2−4/3 (arcsin 1)/π

You can get started with

help ^

help sin

1.2 Temperature conversion.
(a) Write a Matlab statement that converts temperature in Fahrenheit, f, to Cel-
sius, c.

c = something involving f

(b) Write a Matlab statement that converts temperature in Celsius, c, to Fahren-
heit, f.

f = something involving c

1.3 Barn-megaparsec. A barn is a unit of area employed by high energy physicists.
Nuclear scattering experiments try to “hit the side of a barn”. A parsec is a unit
of length employed by astronomers. A star at a distance of one parsec exhibits
a trigonometric parallax of one arcsecond as the Earth orbits the Sun. A barn-
megaparsec is therefore a unit of volume – a very long skinny volume.

A barn is 10−28 square meters.
A megaparsec is 106 parsecs.
A parsec is 3.262 light-years.
A light-year is 9.461 · 1015 meters.
A cubic meter is 106 milliliters.
A milliliter is 1

5 teaspoon.

11

Express one barn-megaparsec in teaspoons. In Matlab, the letter e can be used
to denote a power of 10 exponent, so 9.461 · 1015 can be written 9.461e15.

1.4 Complex numbers. What happens if you start with a large negative value of x
and repeatedly iterate

x = sqrt(1 + x)

1.5 Comparison. Which is larger, πϕ or ϕπ?

1.6 Solving equations. The best way to solve

x =
√
1 + x

or

x2 = 1 + x

is to avoid computers all together and just do it yourself by hand. But, of course,
Matlab and most other mathematical software systems can easily solve such equa-
tions. Here are several possible ways to do it with Matlab. Start with

format long

phi = (1 + sqrt(5))/2

Then, for each method, explain what is going on and how the resulting x differs
from phi and the other x’s.

% roots

help roots

x1 = roots([1 -1 -1])

% fsolve

help fsolve

f = @(x) x-sqrt(1+x)

p = @(x) x^2-x-1

x2 = fsolve(f, 1)

x3 = fsolve(f, -1)

x4 = fsolve(p, 1)

x5 = fsolve(p, -1)

% solve (requires Symbolic Toolbox or Student Version)

help solve

help syms

syms x

x6 = solve(’x-sqrt(1+x)=0’)

x7 = solve(x^2-x-1)

12 Chapter 1. Iteration

1.7 Symbolic solution. If you have the Symbolic Toolbox or Student Version, explain
what the following program does.

x = sym(’x’)

length(char(x))

for k = 1:10

x = sqrt(1+x)

length(char(x))

end

1.8 Fixed points. Verify that the Golden Ratio is a fixed point of each of the following
equations.

ϕ =
1

ϕ− 1

ϕ =
1

ϕ
+ 1

Use each of the equations as the basis for a fixed point iteration to compute ϕ. Do
the iterations converge?

1.9 Another iteration. Before you run the following program, predict what it will
do. Then run it.

x = 3

k = 1

format long

while x ~= sqrt(1+x^2)

x = sqrt(1+x^2)

k = k+1

end

1.10 Another fixed point. Solve this equation by hand.

x =
1√

1 + x2

How many iterations does the following program require? How is the final value of
x related to the Golden Ratio ϕ?

x = 3

k = 1

format long

while x ~= 1/sqrt(1+x^2)

x = 1/sqrt(1+x^2)

k = k+1

end

13

1.11 cos(x). Find the numerical solution of the equation

x = cosx

in the interval [0, π
2], shown in figure 1.4.

0 0.5 1 1.5
0

0.5

1

1.5

Figure 1.4. Fixed point of x = cos(x).

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 1.5. Three fixed points of x = tan(x)

1.12 tan(x). Figure 1.5 shows three of the many solutions to the equation

x = tanx

One of the solutions is x = 0. The other two in the plot are near x = ±4.5. If
we did a plot over a large range, we would see solutions in each of the intervals
[(n− 1

2)π, (n+ 1
2)π] for integer n.

(a) Does this compute a fixed point?

x = 4.5

14 Chapter 1. Iteration

for k = 1:30

x = tan(x)

end

(b) Does this compute a fixed point? Why is the “ + pi” necessary?

x = pi

while abs(x - tan(x)) > eps(x)

x = atan(x) + pi

end

1.13 Summation. Write a mathematical expression for the quantity approximated
by this program.

s = 0;

t = Inf;

n = 0;

while s ~= t

n = n+1;

t = s;

s = s + 1/n^4;

end

s

1.14 Why. The first version of Matlab written in the late 1970’s, had who, what,
which, and where commands. So it seemed natural to add a why command. Check
out today’s why command with

why

help why

for k = 1:40, why, end

type why

edit why

As the help entry says, please embellish or modify the why function to suit your
own tastes.

1.15Wiggles. A glimpse atMatlab plotting capabilities is provided by the function

f = @(x) tan(sin(x)) - sin(tan(x))

This uses the ’@’ sign to introduce a simple function. You can learn more about the
’@’ sign with help function_handle.

Figure 1.6 shows the output from the statement

ezplot(f,[-pi,pi])

15

−3 −2 −1 0 1 2 3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

tan(sin(x))−sin(tan(x))

Figure 1.6. A wiggly function.

(The function name ezplot is intended to be pronounced “Easy Plot”. This pun
doesn’t work if you learned to pronounce “z” as “zed”.) You can see that the
function is very flat near x = 0, oscillates infinitely often near x = ±π/2 and is
nearly linear near x = ±π.

You can get more control over the plot with code like this.

x = -pi:pi/256:pi;

y = f(x);

plot(x,y)

xlabel(’x’)

ylabel(’y’)

title(’A wiggly function’)

axis([-pi pi -2.8 2.8])

set(gca,’xtick’,pi*(-3:1/2:3))

(a) What is the effect of various values of n in the following code?

x = pi*(-2:1/n:2);

comet(x,f(x))

(b) This function is bounded. A numeric value near its maximum can be found
with

max(y)

What is its analytic maximum? (To be precise, I should ask ”What is the function’s
supremum?”)

1.16 Graphics. We use a lot of computer graphics in this book, but studying Mat-
lab graphics programming is not our primary goal. However, if you are curious, the

16 Chapter 1. Iteration

script that produces figure 1.3 is goldrect.m. Modify this program to produce a
graphic that compares the Golden Rectangle with TV screens having aspect ratios
4:3 and 16:9.

1.17 Golden Spiral

Figure 1.7. A spiral formed from golden rectangles and inscribed quarter circles.

Our program golden_spiral displays an ever-expanding sequence of golden
rectangles with inscribed quarter circles. Check it out.

